Variance Stabilizing Power Transformation for Time Series

نویسندگان

  • Victor M. Guerrero
  • Rafael Perera
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series

Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that flu...

متن کامل

Classroom Simulation: Are Variance-stabilizing Transformations Really Useful

When population variances of observations in an ANOVA are a known function of their population means, many textbooks recommend using variancestabilizing transformations. Examples are: square root transformation for Poisson data, arcsine of square root for binomial proportions, and log for exponential data. We investigate the usefulness of transformations in onefactor, 3-level ANOVAs with nonnor...

متن کامل

Approximate Variance-stabilizing Transformations for Gene-expression Microarray Data

MOTIVATION A variance stabilizing transformation for microarray data was recently introduced independently by several research groups. This transformation has sometimes been called the generalized logarithm or glog transformation. In this paper, we derive several alternative approximate variance stabilizing transformations that may be easier to use in some applications. RESULTS We demonstrate...

متن کامل

Assessment of Trend and Seasonality in Road Accident Data: An Iranian Case Study

Background Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data...

متن کامل

Model-free vs. Model-based Volatility Prediction∗

The well-known ARCH/GARCH models for financial time series have been criticized of late for their poor performance in volatility prediction, i.e., prediction of squared returns.1 Focusing on three representative data series, namely a foreign exchange series (Yen vs. Dollar), a stock index series (the S&P500 index), and a stock price series (IBM), the case is made that financial returns may not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017